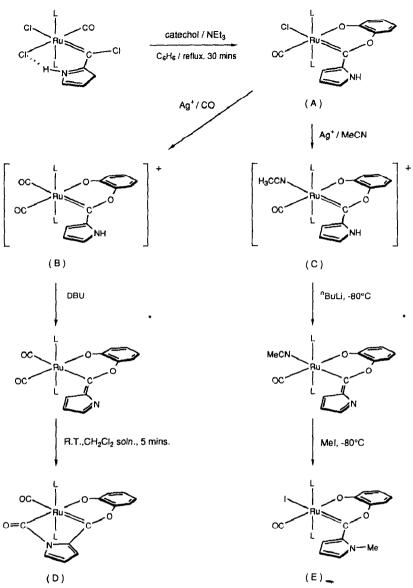
Journal of Organometallic Chemistry, 387 (1990) C5-C8 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20793PC

Preliminary communication

Catecholate spanning a metal-carbon double bond. Synthesis and crystal structure of $\overline{\text{Ru}[=C(OC_6H_4O)}$ -(2-*N*-methylpyrrolyl)]I(CO)(PPh₃)₂

G.J. Irvine, C.E.F. Rickard, W.R. Roper * and L.J. Wright

Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received January 30th, 1990)


Abstract

Catecholate displaces chloride from both the carbene centre and the metal in $Ru[=CCl(2-pyrrolyl)]Cl_2(CO)L_2$ (L = PPh₃) to give $Ru[=C(OC_6H_4O)(2-pyrrolyl)]$ Cl(CO)L₂ (A). Cations derived from A can be deprotonated to ruthenium-substituted 1-azafulvene intermediates which undergo further reactions including methylation at nitrogen to give $Ru[=C(OC_6H_4O)(2-N-methylpyrrolyl)]I(CO)L_2$ (E). The crystal structure of E is reported.

We recently reported the synthesis of the chloropyrrolylcarbene complex $Ru[=CCl(2-pyrrolyl)]Cl_2(CO)(PPh_3)_2$ and showed that the chloride on the carbene carbon atom is readily replaced in substitution reactions [1]. Furthermore, the nitrogen atom bears a hydrogen substituent thus allowing further elaboration. Herein we report (i) the synthesis of new ruthenium(II) pyrrolylcarbene complexes where catecholate spans the ruthenium-carbon double bond, (ii) the deprotonation of cationic derivatives of this metallacycle to yield intermediate 1-azafulvene complexes and (iii) intra- and inter-molecular reactions of these intermediate compounds.

Heating under reflux solutions of Ru[=CCl(2-pyrrolyl)]Cl₂(CO)(PPh₃) and *p*cresol in benzene in the presence of triethylamine gives the *N*-metallated product $Ru[=C(O-p-tolyl)(C_4H_3N)]Cl(CO)(PPh_3)_2$, which is clearly related to the *N*-metallated compound previously characterised by a crystal structure determination [1]. In contrast, under similar reaction conditions but with the dihydroxybenzene cathechol, there is chloride displacement from both the carbene centre and the metal, to form A (Scheme 1).

For compound A a strong $\nu(NH)$ band at 3303 cm⁻¹ is evident in the IR spectrum (see Table 1 for IR data for all compounds reported.) The nitrogen atom of the pyrrolyl group in A is available for further elaboration. Deprotonation becomes facile if the complex is first converted to a cation. This can be accom-

Scheme 1. $L = PPh_3$, \star observable intermediate, not fully characterized.

plished by reaction of A either with $AgClO_4$ in the presence of CO, or with $AgSbF_6$ in the presence of CH_3CN , to yield $[Ru[=C(OC_6H_4O)(2-pyrrolyl)](CO)_2L_2]^+$ (B) and $[Ru[=C(OC_6H_4O)(2-pyrrolyl)](CO)(CH_3CN)L_2]^+$ (C) respectively (Scheme 1).

Addition of the base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to a solution of **B** in tetrahydrofuran (THF) at room temperature causes an immediate colour change from red to light green-yellow and then to deep purple during a few minutes. A crystalline solid of the same colour can be isolated from solution upon the addition of ethanol. Unlike **B** this product has only one ν (CO) band at 1970 cm⁻¹ in the IR spectrum and a strong new band at 1663 cm⁻¹. No N-H activity appears in either the IR or ¹H NMR spectra. We formulate the product as the metallabicyclic

Table 1

IR data '	for	ruthenium	complexes
-----------	-----	-----------	-----------

Compound ^b	v (CO)	ν(NH)	Other bands
$\frac{\text{Ru}[=C(OC_6H_4O)(2-pyrrolyl)]Cl(CO)L_2}{(A)}$	1954	3303m,br	1597m,1333,1323,1262,1218m, 1121,1059m,902m
[Ru[=C(OC ₆ H ₄ O)(2-pyrrolyl)](CO) ₂ L ₂]ClO ₄ (B)	2071, 1984	3267w,vbr	1598m,1534m,1418,1356 1330m,1264,1095,1058,902m, 848m,637m
$[\overline{\text{Ku}}]=C(OC_6H_4)O(2-\text{pyrrolyl})](MeCN)(CO)L_2]SbF_6$ (C)	1971	3400w,br	2072w,1600m,1533w,1417, 1331,1262,1200,1061,905m, 850m,659
$\frac{Ru[=C(OC_6H_4O)(C_4H_3NC(O))](CO)L_2}{(D)}$	1970		1663m,1599m,1518m,1402m, 1369,1325m,1297m,1178m, 1048m,948m,667m
$\frac{Ru[=C(OC_6H_4O)(2-N-\text{methylpyrrolyl})]I(CO)L_2}{(E)}$	1942		1594m,1399,1330,1258,1226m, 1109m,1069, 909m

 $a^{\prime\prime}$ cm⁻¹ measured as Nujol mulls. All bands strong unless otherwise noted. ^b All compounds have satisfactory C, H and N analyses and give the expected ¹H and ¹³C NMR spectra (L = PPh₃).

complex $Ru[=C(OC_6H_4O)(C_4H_3NC[O])](CO)L_2$ (D), and propose that upon deprotonation, a reactive azafulvene ligand is transiently formed (see Scheme 1). The nucleophilic nitrogen atom of this group then attacks the cis-coordinated carbon monoxide forming a new five-membered metallacyclic ring.

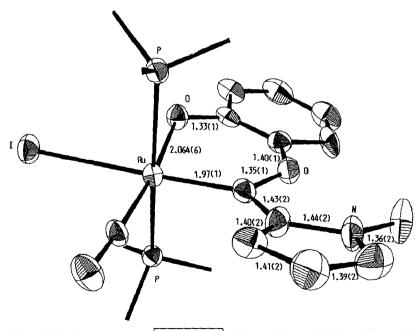


Fig. 1. Molecular structure of $Ru[=C(OC_6H_4O)(2-N-methylpyrrolyl)]I(CO)(PPh_3)_2$ (phenyl rings omitted for clarity).

The azafulvene intermediate can be trapped at low temperature by reaction with methyl iodide. Thus, treatment of the monocarbonyl cation C with "BuLi in THF at -80 °C followed by rapid addition of an excess of methyl iodide results in the formation of Ru[=C(OC₆H₄O)(2-N-methylpyrrolyl)]I(CO)L₂ (E). The structure of E was confirmed by a single crystal X-ray study. Suitable single crystals were grown from CH₂Cl₂/MeOH. Crystal data: C₄₉H₄₀INO₃P₂Ru, M = 980.79, triclinic, space group P1, a 10.769(5), b 10.807(2), c 20.506(2) Å, a 95.64(1), β 87.05(2), γ 117.67(2)°, U 2103.5, Z = 2, D_c 1.548 g cm⁻³, μ (Mo- K_{α}) 77.0 cm⁻¹. 3943 observed data ($I > 3\sigma(I)$) were collected on a Nonius CAD-4 diffractometer at room temperature using Mo- K_{α} radiation (λ 0.71069 Å). Data were corrected for Lorentz, polarisation and absorption effects. The structure was solved by Patterson and Fourier techniques and refined by full-matrix least-squares to R = 0.054 ($R_w = 0.055$). Tables of atom coordinates and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

The structure is shown in Fig. 1 confirming the metallacycle formulation for compounds A-E. The Ru-C double bond distance of 1.97(1) Å is typical of values determined previously in related compounds [1]. The catecholate ring lies close to the plane defined by Ru and the 4 donor atoms I, C(CO), C(carbene), O(catecholate). The pyrrole ring is only slightly tilted out of this plane.

1-Azafulvene is a rare ligand in organometallic chemistry. A substituted 1azafulvene, nitrogen-coordinated to $W(CO)_5$, has been reported from the reaction between an intermediate metal-ketenimine complex and an alkenyl isocyanide [2]. The possibility of stabilising these reactive molecules through metal complexation (through carbon rather than nitrogen) warrants further investigation.

References

- 1 G.R. Clark, D.J. Hodgson, M.M.P. Ng, C.E.F. Rickard, W.R. Roper, and L.J. Wright, J. Chem. Soc. Chem. Commun., (1988) 1552.
- 2 R. Aumann, E. Kuckert, C. Kruger, and K. Angermund, Angew. Chem. Int. Ed. Engl., 26 (1987) 563.